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orbital relative to the cleaved C1-O5 bond found in the simulation 
is in accord with stereoelectronic requirements.6,7 

In our proposed Scheme I, a role of the enzyme is to catalyze 
the reaction by means of orientational (entropic) contributions, 
instead of the distortional (enthalpic) stabilization assumed in the 
classic mechanism (Scheme II). In particular, the molecular 
dynamics simulation indicates that the exocyclic dihedral angle 
(O5-Ci-O4Z-C4-) oscillates in the neighborhood of the value re
quired for optimum stereoelectronic assistance in Scheme I. 
Further, there is the possibility that interactions with the enzyme 
aid in maintaining the proper geometry for reclosing the ring in 
site D and are involved in the retention of configuration at C1. 
The role of the catalytic residues GIu 35 and Asp 52 in the 
enzymatic reaction is analogous in the two pathways. 

Although the molecular dynamics results are only suggestive 
(e.g., it is possible that hydrogen bonding of GIu 35 to the substrate 
O4 is a rare event not sampled by the simulation), it is hoped that 
the formulation of an alternative mechanism will lead to renewed 
interest in the catalysis of polyglycoside hydrolysis and trans-
glycosylation by lysozyme; nothing in the present analysis would 
require that the same mechanism is found in all /3-glycosidases. 
Experiments that aim to establish whether the hydrolytic pathway 
proceeds according to Scheme I or II in lysozyme are in progress.26 
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Recent experimental work has been directed toward the study 
of intramolecular electron transfer (ET) rates in radical anions 
of the type 

A1
--Sp-A2 —• A1-Sp-A2

-

where A1 and A2 are electron acceptors and Sp is a rigid hy
drocarbon spacer with no electron affinity of its own.1 Specifically, 
for the case of A, = 4-biphenylyl, A2 = 2-naphthyl, and Sp = 
1,4-cyclohexadiyl it was found that the cis isomer reacts slower 
than the trans although the distance between acceptors is shorter 
for the cis isomer.2 With other spacers, such as decalins, it also 
appears that distance between acceptors is not the only factor in 
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determining the rate.2 It is most probable that electronic coupling 
between donor and acceptor is influenced by the <r-orbitals of the 
spacer, making it a function of the position as well as the geometry 
of attachment. While the problem of through-bond coupling has 
been addressed before,3 here we want to pay attention to ster
eoelectronic effects.4 To test this hypothesis we have carried out 
ab initio calculations for the simplified model 1 with trans-

H ( " \ H H . . ,* 

1a 1b 

equatorial-equatorial (r-(e,e)-l), trans-axial-axial (?-(a,a)-l), and 
cis-equatorial-axial (c-(e,a)-l) geometries. 

The calculations consist of finding the UHF broken-symmetry 
solutions as diabatic wavefunctionss and their energies corre
sponding to the localized electronic structures la and lb as function 
of the torsional angles of the CH2-groups which were restricted 
to be planar. The interaction matrix element between nonor-
thogonal UHF wavefunctions 

Vaj, = (1 -S^V\{a\H\b) - Sa,b{{a\H\a) + (b\H\b))/2\ 

was evaluated along with the seam of their crossing, with \a) and 
\b) being the diabatic wavefunctions for la and lb, SaJ> the overlap 
integral, and H the electronic Hamiltonian.6 Since in the isolated 
molecule model the ET promoting mode is restricted to the tor
sional motion of the CH2 groups, the seam of the energy surface 
where la and lb are isoenergetic is considered to describe the 
conformations where ET can take place.7 In the trans isomer 
symmetry determines the seam for both f-(e,e)-l and ;-(a,a)-l 
conformations. The rotational conformations are defined by the 
dihedral angle 6 between the tertiary cyclohexane hydrogens and 
one of the CH2 hydrogens (Figure 1 insert). 

In all, six rotational conformations were tested in each of the 
r-(e,e)-l and r-(a,a)-l geometries by using a STO-3G basis set. 
The results are shown in Figure 1. It is found that the energy 
along the seam of crossing in r-(e,e)-l has a minimum for the 
0,0-conformation in which the CH2 planes bisect the cyclohexane 
ring. This is also the conformation with the largest VaJ>. The 
energetically least favored 90,90-conformation has an interaction 
element 12 times smaller corresponding to a rate difference of 
144. In contrast, ?-(a,a)-l shows an energy maximum for the 
0,0-conformation and a maximum for Vab. Since the energies 
of the rotamers are largely determined by nonbonded interactions, 
CH2 groups may be considered poor models for the 2-naphthyl 
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zero-order Hamiltonian H0 as H' = H - H0. The matrix element for the 
electron transfer between |a0) and |i0) defined as Vab = ^aa\H\ba)\ is cal
culated to be the expression given in the text. The crossing seam between |a0> 
and |60) is exactly the same as the seam between |a> and \b) in the high-
symmetry conformation. Even in the low-symmetry case, this is a reasonable 
approximation for small overlap S„i4. 

(7) Under the conditions of the experiment of the seam covers a much 
larger area of the surface because of the effect of solvation. However, here 
we are only interested in the electronic part contributing to the rate and we 
neglect the relative Franck-Condon factors including other vibrational modes. 
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Figure 1. Total energy E (hartree) and transfer matrix element V12 
(cm-1) along the seam of crossing between diabatic energy surfaces for 
t-(e,e)-l (a) and f-(a,a)-l (b) as a function of dihedral angle $ (deg). The 
insert defines 8 with Newman projections along the methylene-cyclo-
hexane C-C bond. 

and 4-biphenylyl groups of the compounds used in the experiments. 
Therefore, MM2 force field calculations8 were carried out for the 
corresponding 1,4-diphenylcyclohexanes 2. It was found that 
;-(e,e)-2 does indeed prefer a 0,0-conformation while the minimum 
for ?-(a,a)-2 lies close to 55,55. Comparing the matrix elements 
of the two conformers of r-1 at rotation angles corresponding to 
the MM2 energy minima for t-2, it is predicted that molecules with 
the ?-(e,e) geometry will react considerably faster than those with 
a f-(a,a) structure. It is noteworthy that very large rate differences 
are predicted for the different rotamers without any change in 
distance. 

The lack of symmetry in c-(e,a)-l required a search on a 
two-dimensional grid to locate a possible seam. The regions near 
60,60 and 60,-60 are close to isoenergetic and give interaction 
energies of 100 and 170 cm"1, respectively. At no point was Vab 

found to exceed one-third of the maximum value found for the 
trans isomers, the MM-2 minimum energy for c-(e,a)-2 is found 
for 0-e and 55-a which is not a crossing point in cis-1. The Vab 

at this geometry for c-(e,a)-l is about 8 times smaller than that 
of r-(e,e)-l at its minimum energy. This finding is in qualitative 
agreement with the experimental data. 

To improve the reliability of these predictions the two extreme 
rotamers of /-(e,e)-l were calculated with a split-valance 4-3IG 
basis set. Qualitatively, the same results were obtained, with the 
0,0-rotamer giving the largest interaction (1790 cm"1) and the 
lowest energy. To check the magnitude of this element against 
the experimental rate constant (2 X 109 s"1) one has to consider 
the reduced electron densities at the attachment positions of 
4-biphenylyl and 2-naphthyl negative ions, pb and p„, compared 
to the essentially unit densities in our model. From densities 
determined by ESR9 of the respective negative ions, an interaction 
energy of 215 cm"1 is obtained (1790 (pbPn)'/2) fairly close to that 
estimated from the experimental rate (150 cm"1) using theory 
essentially due to Jortner.10 

(8) The molecular mechanics (MM2) program was written by N. Allinger 
and Y. H. Yuh, University of Georgia (1980), and was obtained from the 
Quantum Chemistry Program Exchange, University of Indiana. 

(9) Densities used are for an unsubstituted naphthalene negative ion at 
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N. M.; Weissman, S. I. J. Am. Chem. Soc. 1961, S3, 1330. Snyder, L. C; 
Amos, T. J. Chem. Phys. 1965, 42, 3670. 

Finally, to give an estimate of the magnitude of the through-
space interaction, calculations with 4-31G and 6-31IG** basis 
sets were carried out on the interaction of a methyl radical with 
a planar methyl anion at the same distance and geometry as in 
r-(e,e)-l, the latter basis set having a better tail behavior essential 
in the through-space interaction." The calculated through-space 
interaction, 2.7 and 19.8 cm"1, respectively, is fairly small. 

In summary, as far as the aromatic anions in solution are 
described well within the flexible valence basis set, these calcu
lations together with the experimental results show clearly that 
intramolecular long-distance ET proceeds mostly by through-bond 
interaction involving the spacer and does so in a very stereospecific 
manner. Similar mechanisms may be at work in intermolecular 
ET where molecules are held apart by rigid matrices12 or by 
proteins.13 In these cases the solvent molecules or the protein 
fragment will provide the MO's for interaction, although the 
coupling should be weaker. 
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Double nucleophilic attack at a transition-metal benzene com
plex1-6 is an attractive way to make heterobifunctional cyclo-
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